Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neuroprotective Therapy for Parkinson's Disease

Identifieur interne : 001B86 ( Main/Corpus ); précédent : 001B85; suivant : 001B87

Neuroprotective Therapy for Parkinson's Disease

Auteurs : William C. Koller

Source :

RBID : ISTEX:DAA9FBEF109DE88D77954D1FD46657BF3F56D338

Abstract

The concept of neuroprotection relates to the fact that intervention may be able to interfere with the pathogenesis of neuronal cell death. Neuroprotective therapy may make it possible to delay disease progression or prevent the disease altogether. The pathophysiological mechanism of cell death in Parkinson's disease is unknown; however, hypotheses have been developed. The discovery that the toxin MPTP can cause Parkinson's disease both in humans and in animals strengthened the hypothesis that either exogenous or endogenous toxins may be involved in the mechanism of cell death in Parkinson's disease. The mechanism of MPTP toxicity has been elucidated, lending several possible mechanisms for therapeutic intervention in Parkinson's disease. Current data suggest that oxidative stress may play a prominent role in the pathogenesis of Parkinson's disease. It is possible that the generation of free radicals leads to neuronal cell death. There is also evidence that mitochondrial damage may play a role in the pathogenesis of Parkinson's disease. Other theories of possible pathogenesis include excitotoxicity, disturbances of calcium homeostasis, immunological mechanisms, and infectious etiologies. The first agent to be tested as a candidate for neuroprotection was the MAO-B inhibitor deprenyl. Evidence is reviewed for and against the theory that this drug is neuroprotective.

Url:
DOI: 10.1006/exnr.1996.6383

Links to Exploration step

ISTEX:DAA9FBEF109DE88D77954D1FD46657BF3F56D338

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neuroprotective Therapy for Parkinson's Disease</title>
<author>
<name sortKey="Koller, William C" sort="Koller, William C" uniqKey="Koller W" first="William C." last="Koller">William C. Koller</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas, 66160-7314</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DAA9FBEF109DE88D77954D1FD46657BF3F56D338</idno>
<date when="1997" year="1997">1997</date>
<idno type="doi">10.1006/exnr.1996.6383</idno>
<idno type="url">https://api.istex.fr/document/DAA9FBEF109DE88D77954D1FD46657BF3F56D338/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">001B86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Neuroprotective Therapy for Parkinson's Disease</title>
<author>
<name sortKey="Koller, William C" sort="Koller, William C" uniqKey="Koller W" first="William C." last="Koller">William C. Koller</name>
<affiliation>
<mods:affiliation>Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas, 66160-7314</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Experimental Neurology</title>
<title level="j" type="abbrev">YEXNR</title>
<idno type="ISSN">0014-4886</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1997">1997</date>
<biblScope unit="volume">144</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="24">24</biblScope>
<biblScope unit="page" to="28">28</biblScope>
</imprint>
<idno type="ISSN">0014-4886</idno>
</series>
<idno type="istex">DAA9FBEF109DE88D77954D1FD46657BF3F56D338</idno>
<idno type="DOI">10.1006/exnr.1996.6383</idno>
<idno type="PII">S0014-4886(96)96383-9</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0014-4886</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The concept of neuroprotection relates to the fact that intervention may be able to interfere with the pathogenesis of neuronal cell death. Neuroprotective therapy may make it possible to delay disease progression or prevent the disease altogether. The pathophysiological mechanism of cell death in Parkinson's disease is unknown; however, hypotheses have been developed. The discovery that the toxin MPTP can cause Parkinson's disease both in humans and in animals strengthened the hypothesis that either exogenous or endogenous toxins may be involved in the mechanism of cell death in Parkinson's disease. The mechanism of MPTP toxicity has been elucidated, lending several possible mechanisms for therapeutic intervention in Parkinson's disease. Current data suggest that oxidative stress may play a prominent role in the pathogenesis of Parkinson's disease. It is possible that the generation of free radicals leads to neuronal cell death. There is also evidence that mitochondrial damage may play a role in the pathogenesis of Parkinson's disease. Other theories of possible pathogenesis include excitotoxicity, disturbances of calcium homeostasis, immunological mechanisms, and infectious etiologies. The first agent to be tested as a candidate for neuroprotection was the MAO-B inhibitor deprenyl. Evidence is reviewed for and against the theory that this drug is neuroprotective.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>William C. Koller</name>
<affiliations>
<json:string>Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas, 66160-7314</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<abstract>The concept of neuroprotection relates to the fact that intervention may be able to interfere with the pathogenesis of neuronal cell death. Neuroprotective therapy may make it possible to delay disease progression or prevent the disease altogether. The pathophysiological mechanism of cell death in Parkinson's disease is unknown; however, hypotheses have been developed. The discovery that the toxin MPTP can cause Parkinson's disease both in humans and in animals strengthened the hypothesis that either exogenous or endogenous toxins may be involved in the mechanism of cell death in Parkinson's disease. The mechanism of MPTP toxicity has been elucidated, lending several possible mechanisms for therapeutic intervention in Parkinson's disease. Current data suggest that oxidative stress may play a prominent role in the pathogenesis of Parkinson's disease. It is possible that the generation of free radicals leads to neuronal cell death. There is also evidence that mitochondrial damage may play a role in the pathogenesis of Parkinson's disease. Other theories of possible pathogenesis include excitotoxicity, disturbances of calcium homeostasis, immunological mechanisms, and infectious etiologies. The first agent to be tested as a candidate for neuroprotection was the MAO-B inhibitor deprenyl. Evidence is reviewed for and against the theory that this drug is neuroprotective.</abstract>
<qualityIndicators>
<score>5.814</score>
<pdfVersion>1.1</pdfVersion>
<pdfPageSize>554 x 734 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1387</abstractCharCount>
<pdfWordCount>3402</pdfWordCount>
<pdfCharCount>21392</pdfCharCount>
<pdfPageCount>5</pdfPageCount>
<abstractWordCount>201</abstractWordCount>
</qualityIndicators>
<title>Neuroprotective Therapy for Parkinson's Disease</title>
<pii>
<json:string>S0014-4886(96)96383-9</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>144</volume>
<pii>
<json:string>S0014-4886(00)X0059-3</json:string>
</pii>
<pages>
<last>28</last>
<first>24</first>
</pages>
<issn>
<json:string>0014-4886</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Experimental Neurology</title>
<publicationDate>1997</publicationDate>
</host>
<categories>
<wos>
<json:string>NEUROSCIENCES</json:string>
</wos>
</categories>
<publicationDate>1997</publicationDate>
<copyrightDate>1997</copyrightDate>
<doi>
<json:string>10.1006/exnr.1996.6383</json:string>
</doi>
<id>DAA9FBEF109DE88D77954D1FD46657BF3F56D338</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/DAA9FBEF109DE88D77954D1FD46657BF3F56D338/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/DAA9FBEF109DE88D77954D1FD46657BF3F56D338/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/DAA9FBEF109DE88D77954D1FD46657BF3F56D338/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Neuroprotective Therapy for Parkinson's Disease</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1997</date>
</publicationStmt>
<notesStmt>
<note>C. W. OlanowP. JennerM. H. B. Youdim, Eds.</note>
<note type="content">Section title: Regular Article</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Neuroprotective Therapy for Parkinson's Disease</title>
<author>
<persName>
<forename type="first">William C.</forename>
<surname>Koller</surname>
</persName>
<affiliation>Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas, 66160-7314</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Experimental Neurology</title>
<title level="j" type="abbrev">YEXNR</title>
<idno type="pISSN">0014-4886</idno>
<idno type="PII">S0014-4886(00)X0059-3</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1997"></date>
<biblScope unit="volume">144</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="24">24</biblScope>
<biblScope unit="page" to="28">28</biblScope>
</imprint>
</monogr>
<idno type="istex">DAA9FBEF109DE88D77954D1FD46657BF3F56D338</idno>
<idno type="DOI">10.1006/exnr.1996.6383</idno>
<idno type="PII">S0014-4886(96)96383-9</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1997</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The concept of neuroprotection relates to the fact that intervention may be able to interfere with the pathogenesis of neuronal cell death. Neuroprotective therapy may make it possible to delay disease progression or prevent the disease altogether. The pathophysiological mechanism of cell death in Parkinson's disease is unknown; however, hypotheses have been developed. The discovery that the toxin MPTP can cause Parkinson's disease both in humans and in animals strengthened the hypothesis that either exogenous or endogenous toxins may be involved in the mechanism of cell death in Parkinson's disease. The mechanism of MPTP toxicity has been elucidated, lending several possible mechanisms for therapeutic intervention in Parkinson's disease. Current data suggest that oxidative stress may play a prominent role in the pathogenesis of Parkinson's disease. It is possible that the generation of free radicals leads to neuronal cell death. There is also evidence that mitochondrial damage may play a role in the pathogenesis of Parkinson's disease. Other theories of possible pathogenesis include excitotoxicity, disturbances of calcium homeostasis, immunological mechanisms, and infectious etiologies. The first agent to be tested as a candidate for neuroprotection was the MAO-B inhibitor deprenyl. Evidence is reviewed for and against the theory that this drug is neuroprotective.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1997">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/DAA9FBEF109DE88D77954D1FD46657BF3F56D338/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>YEXNR</jid>
<aid>96383</aid>
<ce:pii>S0014-4886(96)96383-9</ce:pii>
<ce:doi>10.1006/exnr.1996.6383</ce:doi>
<ce:copyright type="full-transfer" year="1997">Academic Press</ce:copyright>
</item-info>
<head>
<ce:article-footnote>
<ce:label></ce:label>
<ce:note-para>C. W. OlanowP. JennerM. H. B. Youdim, Eds.</ce:note-para>
</ce:article-footnote>
<ce:dochead>
<ce:textfn>Regular Article</ce:textfn>
</ce:dochead>
<ce:title>Neuroprotective Therapy for Parkinson's Disease</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>William C.</ce:given-name>
<ce:surname>Koller</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas, 66160-7314</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The concept of neuroprotection relates to the fact that intervention may be able to interfere with the pathogenesis of neuronal cell death. Neuroprotective therapy may make it possible to delay disease progression or prevent the disease altogether. The pathophysiological mechanism of cell death in Parkinson's disease is unknown; however, hypotheses have been developed. The discovery that the toxin MPTP can cause Parkinson's disease both in humans and in animals strengthened the hypothesis that either exogenous or endogenous toxins may be involved in the mechanism of cell death in Parkinson's disease. The mechanism of MPTP toxicity has been elucidated, lending several possible mechanisms for therapeutic intervention in Parkinson's disease. Current data suggest that oxidative stress may play a prominent role in the pathogenesis of Parkinson's disease. It is possible that the generation of free radicals leads to neuronal cell death. There is also evidence that mitochondrial damage may play a role in the pathogenesis of Parkinson's disease. Other theories of possible pathogenesis include excitotoxicity, disturbances of calcium homeostasis, immunological mechanisms, and infectious etiologies. The first agent to be tested as a candidate for neuroprotection was the MAO-B inhibitor deprenyl. Evidence is reviewed for and against the theory that this drug is neuroprotective.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Neuroprotective Therapy for Parkinson's Disease</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Neuroprotective Therapy for Parkinson's Disease</title>
</titleInfo>
<name type="personal">
<namePart type="given">William C.</namePart>
<namePart type="family">Koller</namePart>
<affiliation>Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas, 66160-7314</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1997</dateIssued>
<copyrightDate encoding="w3cdtf">1997</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">The concept of neuroprotection relates to the fact that intervention may be able to interfere with the pathogenesis of neuronal cell death. Neuroprotective therapy may make it possible to delay disease progression or prevent the disease altogether. The pathophysiological mechanism of cell death in Parkinson's disease is unknown; however, hypotheses have been developed. The discovery that the toxin MPTP can cause Parkinson's disease both in humans and in animals strengthened the hypothesis that either exogenous or endogenous toxins may be involved in the mechanism of cell death in Parkinson's disease. The mechanism of MPTP toxicity has been elucidated, lending several possible mechanisms for therapeutic intervention in Parkinson's disease. Current data suggest that oxidative stress may play a prominent role in the pathogenesis of Parkinson's disease. It is possible that the generation of free radicals leads to neuronal cell death. There is also evidence that mitochondrial damage may play a role in the pathogenesis of Parkinson's disease. Other theories of possible pathogenesis include excitotoxicity, disturbances of calcium homeostasis, immunological mechanisms, and infectious etiologies. The first agent to be tested as a candidate for neuroprotection was the MAO-B inhibitor deprenyl. Evidence is reviewed for and against the theory that this drug is neuroprotective.</abstract>
<note>C. W. OlanowP. JennerM. H. B. Youdim, Eds.</note>
<note type="content">Section title: Regular Article</note>
<relatedItem type="host">
<titleInfo>
<title>Experimental Neurology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>YEXNR</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">199703</dateIssued>
</originInfo>
<identifier type="ISSN">0014-4886</identifier>
<identifier type="PII">S0014-4886(00)X0059-3</identifier>
<part>
<date>199703</date>
<detail type="volume">
<number>144</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>237</end>
</extent>
<extent unit="pages">
<start>24</start>
<end>28</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">DAA9FBEF109DE88D77954D1FD46657BF3F56D338</identifier>
<identifier type="DOI">10.1006/exnr.1996.6383</identifier>
<identifier type="PII">S0014-4886(96)96383-9</identifier>
<accessCondition type="use and reproduction" contentType="">© 1997Academic Press</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Academic Press, ©1997</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/DAA9FBEF109DE88D77954D1FD46657BF3F56D338/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">NEUROSCIENCES</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001B86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:DAA9FBEF109DE88D77954D1FD46657BF3F56D338
   |texte=   Neuroprotective Therapy for Parkinson's Disease
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024